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We develop a theory of the generation of new spectral components in optical fibers pumped with a solitonic
pulse and a weak continuous wave �cw�. We derive the wave number matching conditions for the above
process and present an analytical method of finding the amplitudes of the generated waves. We discuss related
effects of the depletion of the cw pump and spectral recoil on the soliton. We also point out examples of the
generation of supercontinuum spectra in fibers, where mixing between solitons and dispersive waves plays an
important role.
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I. INTRODUCTION

A powerful laser pulse propagating inside an optical fiber
and having significant part of its spectrum experiencing
anomalous group velocity dispersion �GVD� usually disinte-
grates into a mixture of solitons and dispersive waves
�1–15�. This process is fertile ground for understanding
many fundamental problems in soliton physics including the
interaction between solitons and the interaction of solitons
with dispersive waves.

The recent rise of interest in the above problems has been
fueled by availability of highly nonlinear photonic crystal
and tapered fibers with core diameters of the order of and
less than 1 �m �4–16�. Spectral broadening accompanying
complex transformation of the femtosecond optical pulses in
such fibers, usually referred to as supercontinuum genera-
tion, has attracted significant attention; see, e.g., �5–14�. Pho-
tonic crystal fibers �PCF’s� have also proved to be useful for
efficient conversion of light from the femtosecond solitonic
pump pulse into a spectrally narrow band of the so-called
Cherenkov or resonant radiation �15–17�. A peculiar mecha-
nism leading to the exponential amplification of the resonant
radiation in PCF’s has also been discovered �16,17�.

Until recently, the theory of Cherenkov radiation �16–22�
has remained the only theory which has successfully ex-
plained some of the spectral peaks observed in highly non-
linear PCF’s pumped with femtosecond pulses �11–16�.
However, it has been recently shown theoretically �23� that
mixing of a soliton with a weak continuous wave �cw� also
leads to the generation of new spectral lines, providing that
the higher-order dispersions are included into consideration.
Theoretical predictions of Ref. �23� have been used to back
some of the experimental measurements reported in Ref.
�24�. Spectral measurements and numerical modeling re-
ported in �25,26� have also shown that the interaction of
solitons with dispersive waves leads to the generation of new
spectral peaks. However, no wave number matching condi-

tion, apart from the well-known Cherenkov condition, sup-
porting these observations has been presented in Refs.
�25,26�.

The aim of this work is to further develop a physical
understanding and analytical methods of description of mix-
ing between solitons and dispersive waves in optical fibers.
In particular, we present further results centered around the
wave number matching condition derived in Ref. �23� and
develop an original technique for the calculation of the am-
plitudes of the waves generated via mixing of solitons and
dispersive waves. We describe reactive effects of the radia-
tion on solitons and explain how shapes of the supercon-
tinuum spectra calculated for the experimentally viable con-
ditions are affected by the mixing of the solitons and
radiation.

II. MODEL

We assume that dynamics of the dimensionless amplitude
A�t ,z� of the fundamental fiber mode is governed by the
generalized nonlinear Schrödinger �NLS� equation �see, e.g.,
�17,24�

�zA = iD�i�t�A + i�A�2A . �1�

Here t is dimensionless time and z is the coordinate along the
fiber. In what follows, the frequency dependence of A is
assumed in the form e−i�t, where � is the normalized fre-
quency detuning. D��� is the properly shifted and normalized
frequency dependence of the propagation constant of the fi-
ber mode. All the normalizations made are detailed in Ap-
pendix A. For the purposes of the significant part of the
paper it suffices to disregard the Raman effect. The role of
the latter will be considered in Sec. VIII.

We assume that the fiber is pumped with a solitonic pulse
and a weak—i.e., linear—continuous wave �cw�, and aim to
find the field generated as a result of this process. If

D��� = −
�2

2
, �2�

then Eq. �1� is completely integrable. In this case mixing of
the soliton and cw can result in shifts of the position and the

*Author to whom correspondence should be addressed. Electronic
address: d.v.skryabin@bath.ac.uk; URL: http://staff.bath.ac.uk/
pysdvs

PHYSICAL REVIEW E 72, 016619 �2005�

1539-3755/2005/72�1�/016619�10�/$23.00 ©2005 The American Physical Society016619-1

http://dx.doi.org/10.1103/PhysRevE.72.016619


phase of the soliton, in small oscillations of the soliton am-
plitude and in formation of a new eigensolution of the NLS
equation in the form of the soliton nesting on the cw pedestal
�27–30�. If the soliton under consideration is short and/or the
slope of ��

2D��� is sufficiently steep, then the higher-order
dispersions become important and the system is far from the
integrable limit. In this case the most striking effect resulting
from mixing of the solitons and cw’s is the generation of new
spectrally narrow radiation bands �23�.

III. PERTURBATION THEORY: INTRODUCTION

We look for solutions of Eq. �1� in the form

A = F�t�eiqz + g�z,t�, F = �2q sech�t�2q� . �3�

Feiqz is an exact soliton solution of Eqs. �1� and �2�, and q
�0 is the shift of the soliton wave number. The g term is a
superposition of all the dispersive waves in the system; i.e., g
includes the cw pump and all the waves generated, when
D��� deviates from Eq. �2�. For our purposes below it is
sufficient to include the third-order dispersion only—i.e.,
take D��� as the third-order polynomial:

D��� = −
�2

2
+ ��3. �4�

Link of the parameter � with physical quantities is given in
Appendix A.

Assuming that g is a linear wave we derive

i�D�i�t� −
1

2
�t

2�Feiqz = �zg − iD�i�t�g − i2F2g − iF2g*ei2qz.

�5�

Deviations of D�i�t� from 1
2�t

2 are retained not only on the
left-hand side of Eq. �5�, but also on its right-hand sides. This
is because, even for ����1, we anticipate the existence of the
dispersive waves with such frequency detunings from the
soliton that the third-order contribution to the overall disper-
sion starts to be compatible with or dominant over the
second-order one; see �17� for a more detailed discussion.

We assume that g consists of the two parts

g = weiDcwz−i�cwt + �, Dcw = D��cw� . �6�

The w term in Eq. �6� is the weak cw pump, which obeys Eq.
�5� when the soliton field is disregarded—i.e., F=0. Here w
is a real amplitude of the cw pump and �cw is its frequency.
The � term is the generated wave. To find the wave number
matching conditions it suffices to assume that the cw pump
and the soliton are the fixed sources of energy. As we will
see below this assumption allows us to make excellent quan-
titative predictions of the frequencies of the generated waves.
Substituting Eq. �6� into Eq. �5� we find

i�D�i�t� −
1

2
�t

2�Feiqz + i2F2weizDcw−it�cw

+ iF2we2iqz−izDcw+it�cw

= �z� − iD�i�t�� − i2F2� − iF2�*e2iqz. �7�

The left-hand side of Eq. �7� consists of the three parts serv-
ing as driving for the wave �. The first part of the driving
depends on the soliton field only and is proportional to the
deviation of the dispersion D��� from the ideal parabolic
form. The second and third parts originate from the mixing
of the soliton and cw fields. These terms are linear in the cw
amplitude and quadratic in the soliton.

IV. WAVE NUMBER MATCHING CONDITIONS AND
RESONANCE FREQUENCIES

A. Analytics

For Eq. �7� to have the dispersive wave solutions, the
operator on the right-hand side should have continuum
modes, which can be excited by the left-hand side. To find
these continuum modes we neglect the F2 terms in the right-
hand side and seek � in the form �	exp�iD���z− i�t�. Wave
number matchning with the three driving terms in the left-
hand side of Eq. �7� is achieved providing

q = D��� , �8�

Dcw = D��� , �9�

2q − Dcw = D��� . �10�

Equation �8� is a well-known condition giving the frequen-
cies of the resonance waves emitted by the soliton in the
presence of the higher-order dispersions, so-called Cheren-
kov resonances �17–22�. Equations �9� and �10� give new
resonances which depend on the cw pump �23�. These reso-
nances are driven by the four-wave mixing �FWM� between
the solitons and cw pump �see wF2 terms on the left-hand
side of Eq. �7��; therefore, we call them FWM resonances.
All three conditions can be written as one equation

q + J�Dcw − q� = D���, J = − 1,0, + 1. �11�

The resonance frequencies are found by solving Eqs. �11� for
�. It is clear that condition �11� involves four wave numbers:
namely, Dcw is the wave number of the cw pump, D��� on
the right-hand side is the wave number of the generated dis-
persive wave, and q, which occurs twice, is the wave number
of the Fourier harmonics of the soliton. The fact that all
Fourier harmonics of the soliton have the same wave number
originates from our assumption that the reference frequency
�0 �see Appendix A� coincides with the soliton central fre-
quency. Relaxing this assumption—i.e., allowing nonzero-
frequency detuning in the solitonic part of Eq. �3�, as it has
been done in Refs. �17,23�—makes calculations more cum-
bersome, but reveals that the first q in Eq. �11� traces back to
the wave number of the soliton at the resonance frequency,
ks/rad, and the second q to the wave number of the soliton at
the frequency of the cw pump, ks/cw. Thus, in general, Eq.
�11� transforms to

ks/rad + J��cw − ks/cw� = �rad, �12�

where �cw and �rad are the propagation constants of the fiber
mode calculated at the frequencies of the cw pump and ra-
diation; see Appendix A and �23�.
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To find the resonance frequencies we simply plot D���
and find when it gets equal to the left-hand sides of Eq. �11�.
Figures 1 �a1�, 1 �b1�, and 1 �c1� show these plots for the
three topologically distinct cases: �a1� corresponds to the
three resonances, �b1� corresponds to the five resonances and
�c1� corresponds to the case when two resonances are degen-
erate. Figures 2 �a1�, 2 �b1�, and 2 �c1� show the cases as in
Figs. 1 �a1� and 1 �b1�, but for the opposite sign of �.

It is obvious that one of the roots of Eq. �9� coincides with
�cw. If frequencies of the Cherenkov resonance and of the cw
pump coincide—i.e., �cw=�ch, where D��ch�=q—then all the
three left-hand sides in Eqs. �11� become equal to q. There-
fore, there are three degenerate resonance frequencies in this
case, which coincide with �ch. By deviating �cw from �ch we
remove degeneracy and get three distinct resonances �ch
+J
�cw−�ch+O���cw−�ch�2��; see points 1, 4, and 5 in Fig. 1
�b1�. Note that the initial soliton frequency coincides with the

zero of the � axes in Figs. 1 and 2. Approximate expressions
for the two resonance frequencies �see points 2 and 3 in Fig.
1 �b1�� nearest to the soliton frequency, �=0, can be found
assuming that D��� is parabolic in the proximity of the soli-
ton. This gives the resonances at ±2�−q− j�Dcw−q�+O���,
where j=1 if Dcw	0 and j=−1 if Dcw�2q.

B. Modeling

In what follows it will be important for us to use a visu-
alization tool allowing direct association of the spectral
peaks with the parts of the signal in the time domain. For this
we use the well-known XFROG �cross-correlation
frequency-resolved optical gating� spectrograms; see, e.g.,
�10,13,14,24–26�. Numerically computed spectrograms in
this paper are produced by plotting the integral

FIG. 1. �Color online� Wave number matching diagrams �top� and XFROG spectrograms �bottom�, when the fiber with the negative GVD
slope, �=−0.015, is pumped with the soliton and cw; see Eqs. �14�. w=0.4, a=1, and �s=0 in all cases. �cw=−18 for �a�, −27 for �b�, and
−22.2 for �c�. Soliton parameter q=18 for �a�,�b� and 3 for �c�. Propagation distance z is 1 for �a2�, 6 for �b2�, and 12 for �c2�.

FIG. 2. �Color online� Wave number matching diagrams �top� and XFROG spectrograms �bottom�, when the fiber with the positive GVD
slope, �=0.015, is pumped with the soliton and cw; see Eqs. �14�. w=0.4, a=1, q=18, and �s=0 in all cases. �cw=−18 for �a�, 27 for �b�,
and 17.5 for �c�. Propagation distance z is 1 for �a2� and 6 for �b2�, �c2�.
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I�t,�� = ln�

−


+


dt�Aref�t� − t�A�t��e−i�t�� . �13�

Here Aref is an envelope of the reference pulse and A is the
envelope of the field inside the fiber. Let us assume that the
reference pulse is a rectangular one with duration �ref. Then
knowledge of I��� for some fixed value of the delay t gives
us the spectrum of the part of the field selected by the values
of t and �ref. The most common practical choice for the ref-
erence pulse is the pump pulse itself. Note that in order to
calculate I, we use field envelopes, not the fields themselves.
This leads to a certain frequency shift of our spectrograms
with respect to the experimental ones.

To verify predictions for the resonance frequencies ob-
tained by numerical solution of Eqs. �4� and �11� we carried
out an extensive series of numerical experiments by model-
ing Eq. �1� with initial conditions

A�t,z = 0� = a�2q sech�t�2q�e−i�st + we−i�cwt. �14�

Here a and w determine the amplitudes and �s,cw the frequen-
cies of the pump pulse and cw. Modeling results for �	0
and ��0 shown in Figs. 1 and 2, respectively, demonstrate
that our analytical predictions for the location of the reso-
nance frequencies agree with numerics.

Regions of depletion of the cw pump in the spectrograms
in Figs. 1 �b2� and 2 �b2�, 2 �c2� indicate that the large part of
the energy transferred to the waves generated via FWM is
taken from the cw pump and the soliton serves as a mediator
in this transfer. If depletion of the cw pump is weak, as in
Figs. 1�a2� and 2�a2�, then the generated FWM signal is also
weak. The length and direction of growth of the radiation
tails and of the depletion regions are determined by the val-
ues and signs of the group velocities at the corresponding
frequencies, which can be inferred from the slope of the D���
curve. For example, looking at Figs. 1�b1,2� one can see that
the slope of D��� is negative for the frequencies correspond-
ing to the Cherenkov radiation and to the cw pump �see
points 5 and 1� and it is positive for the frequency corre-
sponding to the FWM peak marked with 2. According to
this, the tail of the Cherenkov radiation and the depletion
region of the cw pump are acquiring negative delays with
respect to the soliton, while the tail of the FWM radiation
extends towards positive delays. Note that the FWM reso-
nances generally have very different excitation efficiencies
and in our numerical experiments we practically never ob-
served two or more of them simultaneously. The group ve-
locities of the soliton and of the cw pump are the same in the
case shown in Figs. 1�c1,2� and the depletion region of the cw
pump is located just opposite to the soliton. We have also
demonstrated �see Appendix B� that the soliton in this case
creates an effective repulsive potential for the dispersive
waves at the frequency of the cw pump, which explains for-
mation of the quasibound soliton-hole pair; see Fig. 1�c2�.

In the Cherenkov case, the resonance wave serves as a
sink for the energy, which is extracted from all the soliton
Fourier components in such a way that the soliton structure
of the gradually decaying pulse is preserved during propaga-
tion �17�. The soliton is also sustained as a coherent entity in

the process of generation of the FWM signal; see Fig. 3.
Total energy and momentum in the system are shared and
exchanged between all the Fourier components of the soli-
ton, the cw pump, and all the newly generated waves. There-
fore, the wave number matching conditions �11� cannot be
associated with conservation of the total momentum as it can
be done in the textbook case of FWM between cw’s �31�.

V. AMPLITUDES OF THE GENERATED WAVES

In this section we develop an approach allowing us to
estimate analytically the amplitudes of the emitted resonance
waves. In order to achieve good agreement of the analytical
and numerical results we need to abandon an assumption
used in Sec. III that the cw pump is not affected by the FWM
process. As our first step we assume that all the generated
waves and cw pump are well separated spectrally and write

g = �ch�z,t�eizDch−it�ch + �
n=1

N

�n�z,t�eizDn−it�n,

Dn = D��n�, Dch = D��ch� . �15�

The first term in Eq. �15� is responsible for the Cherenkov
resonance and the sum takes account of all the other reso-
nances including the cw pump. We substitute Eq. �15� into
Eq. �5� and assume that all �n are the slow functions of t and
z, so that we can neglect by the derivatives of �n, which are
higher than first, and by the nonlinear terms, which are not
wave number matched.

Here we consider the case when Eqs. �9� and �10� have
four real roots—i.e., N=4; see Figs. 1�b1 ,c1� and 2�b1 ,c1�.
The theory for the cases N=2 and N=3 is outlined in Ap-
pendix B. The structure of Eqs. �9� and �10�, in the case of
the cubic dispersion �4�, is such that if one of them has three
real roots, then the other one has only one. We assume that
the resonance frequency originating from the single-root
equation and the corresponding amplitude are numbered with
n=4; see Fig. 1�b1�. Then the resulting set of equations is

�z�n + Dn��t�n − i2F2�n = iKn, n = 1,2,3,4,

K1 = F2
2�2eit��1−�2� + 2�3eit��1−�3� + �4
*eit��1+�4�� ,

K2 = F2
2�1eit��2−�1� + 2�3eit��2−�3� + �4
*eit��2+�4�� ,

FIG. 3. �Color online� �A� as a function of t for z=0,3 ,6 ob-
tained by solving Eq. �1� with the initial conditions �14�. Parameters
are �=0.015, a=1, q=18, �s=0, w=0.4, and �cw=17.5.
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K3 = F2
2�1eit��3−�1� + 2�2eit��3−�2� + �4
*eit��3+�4�� ,

K4 = F2
�1
*eit��4+�1� + �2

*eit��4+�2� + �3
*eit��4+�3�� , �16�

�z�ch + Dch� �t�ch − i2F2�ch = ieit�ch�D�i�t� −
1

2
�t

2�F ,

�17�

Dn� = ��D��n�, Dch� = ��D��ch� .

The equation for the Cherenkov field splits from the other
equations. The solution of Eq. �17� has been studied in detail
in �17� and will not be discussed here. The equation for �4 is
resonantly coupled to the equations for �1,2,3 via the
F2g*e2iqz term in Eq. �5�. The fields corresponding to �1,2,3
have the same wave numbers. Therefore, the corresponding
equations are coupled via the F2g term in Eq. �5�.

The results of our numerical modeling �see Fig. 1�b2��
indicate that the strongly dominant FWM process in this case
happens when the cw pump and the resonance field both
have their frequencies located between the soliton frequency,
�=0, and the Cherenkov frequency, �=�ch. Neglecting by
the fields �3,4, which are either not observed at all or negli-
gibly small, we reduce Eqs. �16� to

�z�1 + D1��t�1 − i2F2�1 = i2F2�2eit��1−�2�, �18�

�z�2 + D2��t�2 − i2F2�2 = i2F2�1eit��2−�1�. �19�

To solve these equations it is useful to know the general
solution to

�z�n + Dn��t�n − i2F2�n = iKn�t� , �20�

which is given by

�n =
ieiSn�t�

Dn�
�Bn�t − Dn�z� + 


−


t

dt�Kn�t��e−iSn�t��� , �21�

where Sn= �2�2qtanh�t�2q�� /Dn� and Bn is an arbitrary func-
tion of its argument. The initial condition �n�z=0�=0 should
be applied for the generated signal fields, and it is satisfied
for

Bn = − 

−


t−Dn�z
dt�Kn�t��e−iSn�t��. �22�

The condition �n�z=0�=w should be used for the cw pump,
and it is satisfied for

Bn = − iDn�w − 

−


t−Dn�z
dt�Kn�t��e−iSn�t��. �23�

Let �1 be the cw pump and �2 be the generated signal.
Using Eqs. �21�–�23� we can transform the differential equa-
tions �18� and �19� into a set of the integral equations

�1 = weiS1 +
i2eiS1

D1�



t−zD1�

t

dt�F2�2eit���1−�2�−iS1, �24�

�2 =
i2eiS2

D2�



t−zD2�

t

dt�F2�1eit���2−�1�−iS2. �25�

Assuming that the potential created by the soliton and cw
depletion is sufficiently weak, we can approximate the pump
wave with �1�weiS1 and solve Eqs. �24� and �25� by itera-
tions. Note that the phase of the cw component rotates on the
soliton and changes its sign as t varies from −
 to +
. The
leading approximation for �2 is then

�2 �
i2weiS2

D2�



t−zD2�

t

dt�F2eit���2−�1�−iS2+iS1. �26�

The integral in Eq. �26� cannot be calculated exactly, but
its value can be found in the limit of the large z and �t�.
Remembering that z is always positive and assuming that
�D2�z / t��1 we find that if D2�	0, then

lim
z→
,t→−


�2 =
2weiS2�−
�J

iD2�
, lim

z→
,t→

�2 = 0, �27�

and if D2��0, then

lim
z→
,t→−


�2 = 0, lim
z→
,t→


�2 =
2iweiS2�
�J

D2�
, �28�

where

Sn�±
� = ± 2�2q/Dn�, �29�

J = 

−





dtF2�t�eit��2−�1�−iS2�t�+iS1�t�. �30�

The integral �30� can be calculated either numerically or
in an approximate analytical form. Using the fact that F2 is
localized around zero, we can replace the function Sn�t� by
its linear approximation valid for t close to zero: Sn�t�
�4qt /Dn�. Then,

J � 

−





dtF2eit4�− =
2
�−

sinh�
�−/�2q�cosh�
�−/�2q�
,

�31�

�− =
�2 − �1

4
− q

D1� − D2�

D1�D2�
. �32�

Numerically solving Eq. �1� and taking the Fourier transform
of A we can calculate the rate � of the energy change at a
particular frequency. An approximate analytical expression
for this rate at the frequency of the FWM signal is given by
��d /dz�length of the radiation tail� �tail amplitude�2�
�4w2J2 /D2�. Figure 4 shows � as the function of the cw
frequency. One can see that the explicit analytical expression
�31� �see the dashed line� gives reasonable agreement with
numerical calculations of the integral in Eq. �30� �see the
solid line�. Comparison of the results for � obtained from the
direct numerical modeling of Eq. �1� and from Eqs. �30� and
�31� is good only when depletion of the cw pump is small
and the iterative method of solving Eqs. �24� and �25� is
applicable. This condition is satisfied outside the regions of

THEORY OF GENERATION OF NEW FREQUENCIES BY… PHYSICAL REVIEW E 72, 016619 �2005�

016619-5



the two maxima of ���cw� �see Figs. 4�a� and 4�b��; here,
�cw=�1. We should notice, however, that some discrepancy
�see dotted and full lines in Fig. 4�b�� is preserved even when
the depletion of the pump is negligible. This is attributed to
the shift of the soliton central frequency due to the spectral
recoil effect, which has not been taken into account so far;
see more detailed discussion in Sec. VII.

Let us now summarize and discuss the above results.
Equations �18� and �19� describe the interaction of the two
waves within and by means of the potential created by the
soliton. The pump wave stimulates the signal wave to escape
from the potential. The reduction of the problem to the inte-
gral equations �24� and �25� and the iterative method of their
solution are similar to the integral equations of the classical
and quantum scattering theories and to the Born method
�32�. In the Born approach the amplitude of the scattered
field in the far zone of the potential is proportional to the
amplitude of a Fourier component of the potential �32�. This
relates to the fact that in the leading order of the Born theory
the potential is simply disregarded. Similarly, we could dis-
regard the soliton potential on the left-hand sides of Eqs. �18�
and �19�; then, the q term in Eq. �32� would disappear. This
term originates from the rotation of the phases of the signal
and pump waves �see S1,2 functions� introduced by the soli-
ton potential. The phase rotation is important because the

spectral amplitude of the exponentially localized potential is
exponentially sensitive to the value of the frequency at which
it is calculated. The influence of this effect on the theoretical
predictions of the amplitude of the Cherenkov radiation has
been analyzed in detail in our previous work �17�.

VI. DEPLETION OF THE CW PUMP

The depletion of the field at the frequency of the cw pump
can be described only in the second order of our iterative
procedure, which does not make the strongest case for a
good comparison between numerical and analytical results.
However, the mere fact of the existence of the depletion can
be derived from the relatively simple calculations. Substitut-
ing Eq. �26� into Eq. �24� we find that the amplitude of the
cw pump is given by

�1 � weiS1�t� −
4weiS1�t�

D1�D2�



t−zD1�

t

dt�F2�t��eit���1−�2�−iS1�t��+iS2�t��

�

t�−zD2�

t�
dt�F2�t��eit���2−�1�−iS2�t��+iS1�t��. �33�

Using the same arguments as before we can replace the lim-
its of the integrals in Eq. �33� with ±
 and find that ��1�
��w�
1+4J2 / �D1�D2���. D1�D2�	0 �see points 1 and 2 in Fig.
1�b1��, and hence the above result predicts depletion of the
cw pump.

VII. SPECTRAL RECOIL

The drift of the carrier frequency of the soliton �s induced
by the FWM has been already mentioned above, and it is
explicitly demonstrated in Fig. 5. In the absence of the Ra-
man effect this drift is solely attributed to the spectral recoil
effect originating from the interaction of the dispersive
waves with the soliton. We assume that the total field mo-
mentum M =1/ �2i��dt�A*�tA−A�tA

*� can be approximately
divided into the soliton momentum and momenta of all the
dispersive waves. Conservation of M—i.e., �zM =0—implies
that the changes of the momenta of the participating disper-

FIG. 4. �Color online� �a� The rate � of the energy change at the
frequency of the FWM signal as a function of the frequency of the
cw pump, �cw. The dashed line is obtained using an analytical ap-
proximation for J; see Eq. �31�. The solid line corresponds to the
numerical calculation of J using Eq. �30�, and the dots are obtained
from the numerical solution of Eq. �1�. Parameters are �=−0.015,
a=1, q=3, �s=0, and w=0.02. �b� is the same as �a� but plotted in
the logarithmic scale.

FIG. 5. �Color online� Change of the soliton frequency �s with
propagation due to the spectral recoil effect, as calculated from Eq.
�1� with �=0.015. Initial parameters for the �cw=27 case are the
same as for Fig. 2�b� and for the �cw=17.5 case are the same as for
Fig. 2�c�. The dashed line demonstrates the spectral recoil effect due
to Cherenkov radiation only—i.e., in the absence of the cw pump.
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sive waves must be compensated for by the change of the
soliton momentum. This gives us the balance equation

Qs�z�s = − �chDch� ��ch�2 − 
�2D2���2�2 + �1D1����1�2 − w2�� .

�34�

Here Qs=�dt�F�2 is the soliton energy and �z�s is the change
of the soliton frequency with z �17�. The subscripts 1 and 2
mark the quantities related to the cw pump and FWM signal,
respectively. ��1�2−w2	0 is the difference in the amplitudes
of the depleted and initial cw pump. The graph with �cw
=27 in Fig. 5 corresponds to Figs. 2�b1,2� and the graph with
�cw=17.5 to the Figs. �c1,2�.

The term �chDch� ��ch�2 is positive in the both cases, and
therefore the Cherenkov effect tends to decrease the soliton
frequency—i.e., leads to the red recoil. The recoil originating
from the Cherenkov radiation only has been analyzed in de-
tail in Ref. �17�. The expression inside 
 � characterizes in-
fluence of the FWM on the change in the soliton frequency.
It can be seen that the both terms inside 
 � have the same
sign for the cases shown in Figs. 2�b� and 2�c�. Namely, 
 � is
negative—i.e., FWM leads to the blue recoil—in the case of
Figs. 2�b1,2� and it is positive—i.e., FWM leads to the red
recoil—in the case of Figs. 2�c1,2�. The dashed line in Fig. 5
shows the relative smallness of the recoil originating from
the Cherenkov radiation only—i.e., w=0. One can see that
the recoil from the FWM process is much stronger, and it
determines overall direction in the drift of the soliton fre-
quency, in agreement with the above predictions derived
from the balance equation �34�.

VIII. ROLE OF THE FOUR-WAVE MIXING RESONANCES
IN SUPERCONTINUUM GENERATION

In experiments on supercontinuum the fiber is pumped
with pulses only. Under sufficiently common conditions a
single pump pulse generates both solitons and dispersive
waves, which mix and interact within the fiber. The interpre-
tation of many experimental measurements is still causing
certain controversy. Therefore, we found it instructive to
summarize the main features of supercontinuum spectra, the
origin of which lies in the FWM between solitons and dis-
persive waves and which can be understood using the theory
developed above. The Raman effect is important in the ex-
periments with femtosecond pulses therefore in this section
of the paper we add the Raman term iA�−


+
R�t���A�t
− t� ,z��2dt� to the right-hand side of Eq. �1�. Here R�t�, is the
Raman response function of silica; see Appendix A.

A. Pump at the zero GVD wavelength:
FWM of solitons and relict radiation

To achieve efficient generation of supercontinuum the
pump frequency is often selected to coincide with the zero
GVD frequency: ��

2D���=0. At the first stage of the evolu-
tion the pulse breaks up into two spectral parts located on the
opposite sides from the zero GVD point; see Fig. 6 and
�1,10,24–26�. These parts are approximately equally detuned
from the zero GVD point and therefore propagate with close

group velocities. The part located in the anomalous GVD
region forms a soliton or a few, while the part in the normal
GVD region is formed from the dispersive waves only, and it
will be called relict radiation. The parabolic shape of the
XFROG spectrograms in Figs. 6�a1,2� and 6�b1,2� is due to
the parabolic shape of ��D���. The up or down orientation of
the parabolas is determined by the sign of �. The soliton
emerging in the anomalous GVD region efficiently interacts
with the part of the relict radiation propagating with the same
group velocity. Therefore we naturally expect that the result
of this interaction should be similar to the case presented in
Figs. 1�c1,2�. Indeed, in Figs. 6�a1� and 6�b1� one can see the
formation of the depletion region in the relict radiation di-
rectly opposite to the soliton.

With further propagation distance the XFROG spectro-
grams for the cases ��0 and �	0 become qualitatively dis-
tinct. In particular, in the case ��0 the new spectral lines
emerge outside the right branch of the parabola �see Fig. 6
�a2� and Refs. �10,25,26��, causing further spectral broaden-
ing. In the case �	0 the new spectral lines are formed be-
tween the two branches of the parabola; see Fig. 6�b2� and
Ref. �24�. One can clearly see that in the both cases new
spectral lines are starting to form in the regions of the time
domain adjacent to the solitons. We argue below that the new
spectral features are the FWM resonances between the soli-
tons and relict radiation.

Raman effect plays a key role in understanding of these
new peaks. Indeed, as propagation distance increases the Ra-
man induced soliton self-frequency shift towards the red part
of the spectrum becomes noticeable �31�. This destroys the
synchronism of the group velocities between the soliton and
the depleted part of the relict radiation, thereby removing
degeneracy of the FWM resonance and cw pump; compare,
e.g., Figs. 1�c� and 1�b�. In the case ��0 �see Fig. 6�a1,2��,
the corresponding wave number matching diagram becomes
qualitatively similar to Fig. 2�c1� and in the case �	0 �see
Fig. 6�b1,2�� to Fig. 1�b1�. This explains location of the new
spectral peaks. Note that if the fiber is pumped at or close to
the zero GVD wavelength, then the Cherenkov radiation usu-
ally appears after the FWM peaks are generated.

B. Pump in the anomalous GVD region:
FWM of solitons and Cherenkov radiation

If the pump wavelength is in the anomalous GVD region
and �	0, then the redshifted Cherenkov radiation is strongly
amplified through the mechanism described in details in
Refs. �16,17�. Furthermore, if the pump pulse is sufficiently
strong to give birth to more than one soliton, then the second
and subsequent solitons are always born inside the tail of the
Cherenkov radiation emitted by the strongest primary soli-
ton; see Figs. 6�c1,2�. Mixing of the Cherenkov radiation
with the secondary solitons results in the generation of the
FWM peaks; see Figs. 6�c1,2�. The wave number matching
diagram qualitatively corresponding to this case is shown in
Fig. 1�b1�. Experimental measurements of this effect have
been published in Ref. �24�.

IX. SUMMARY

We have presented a thorough theoretical and numerical
investigation of the generation of new frequencies resulting
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from the mixing of solitons and dispersive waves in optical
fibers with higher-order dispersions and demonstrated the
importance of this process for understanding of the optical
supercontinuum observed in photonic crystal fibers.

The wave number matching condition �see Eq. �12� for
J= ±1� determining frequencies of the newly generated
waves is formally identical to the textbook wave number
matching condition for the FWM of cw’s; see, e.g., Chap. 10
in �31�. However, the physical interpretation of Eq. �12� has
important differences from the standard case. In the case of
FWM between the continuous dispersive waves, the two
pump photons at the same or different frequencies �p1 and
�p2 are transformed via virtual transitions into the two signal
photons with frequencies �s1 and �s2. The photon energy is
conserved during this process, so that �p1+�p2=�s1+�s2. In
our case the input cw actually interacts with all Fourier com-
ponents of the solitons. Therefore no energy conservation
law involving only four frequencies associated with the four
wave numbers involved in the matching condition exists in
our case. Momentum conservation also can be applied only
for all Fourier harmonics of the soliton plus the input and
generated cw’s; see Eq. �34�.

To find the signal emerging from the scattering of the cw
pump on the soliton we reduce the problem to a system of
integral equations, which are then solved by iterations. In
this way we have been able to calculate the amplitudes of the
generated waves and predict depletion of the cw pump. Us-

ing conservation of the total momentum we have predicted a
shift of the soliton carrier frequency due to spectral recoil
from the input and generated cw’s.
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APPENDIX A

Here we discuss normalization of the variables and pa-
rameters in Eq. �1�. The variable t is the time in the reference
frame moving with the group velocity v0=v��0� and mea-
sured in the units of �: t= �T−z /v0� /�, where T is the physi-
cal time, � is the normalization constant close to the pulse
duration, and �0 is the reference frequency. � is the normal-
ized detuning of the physical frequency � from �0—i.e., �
−�0=� /�. If ���� is the frequency dependence of the propa-
gation constant of the fundamental fiber mode, then

D��� = 
���0 + �/�� − ���0� − �1��0��/��Lgvd, �A1�

where �n���=��
n ���� and Lgvd=�2 / ��2��0�� is the GVD

length. Thus the Fourier image of the operator D�i�t� is, in
fact, the properly shifted and normalized propagation con-
stant of the fiber mode. z=Z /Lgvd, where Z is the distance

FIG. 6. �Color online� Modeling of supercontinuum generation in a fiber with �=0.05/ �Wm� pumped with femtosecond optical pulses.
�a1,2� Pump wavelength coincides with the zero GVD wavelength at 638 nm, GVD slope ���2=0.9 ps3 /km, �=200 fs, peak pump power
3.6 kW, and propagation distances are 0.24 m �a1� and 1.12 m �a2�. Corresponding dimensionless parameters are a=4.6, q=3.4, �=0.015,
�s=11, z1=0.3, and z2=1.4. �b1,2� Pump wavelength coincides with the zero GVD wavelength at 1570 nm, GVD slope ���2

=−0.9 ps3 /km, �=200 fs, peak pump power 3.6 kW, and propagation distances are 0.4 m �a1� and 1.44 m �a2�. Corresponding dimension-
less parameter are a=4.6, q=3.4, �=−0.015, �s=−11, z1=0.5, and z2=1.8. �c1,2� Pump wavelength is in the anomalous GVD region at
1432 nm, fiber has the zero GVD wavelength at 1651 nm, �2=−50 ps2 /km, GVD slope ���2=−0.68 ps3 /km, �=150 fs, peak pump power
3.6 kW �c1� and 4.4 kW �c2�, and propagation distance 1.12 m. Corresponding dimensionless parameters are a=3.47 �c1�, a=3.85 �c2�, �
=−0.015, �s=15, and z=2.5.
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along the fiber. The field amplitude in Eq. �1� is measured in
units of �P0, where P0=1/ ��Lgvd� is the peak power of the
fundamental soliton with duration �—i.e., q=1/2—and � is
the nonlinear fiber parameter �31�. Link of � in Eq. �4� with
the real-world parameters is given by �
=���2��0� / �6���2��0���, and its sign is determined by the
slope of �2���. The Raman response function introduced in
Sec. VIII is given by R�t�= �1−����t�+���1

2

+�2
2���t� / ��1�2

2�, where ��t� is the Dirac delta function, ��t�
is the Heaviside function, �=0.18, �1=12.2 fs/�, and �2
=32 fs/� �31�.

APPENDIX B

In the case, when there are only two FWM resonances,
N=2 �see Figs. 1�a1,2� and 2�a1,2��, the resulting set of equa-
tions for the slowly varying amplitudes is

�z�1 + D1��t�1 − i2F2�1 = iF2�2
*eit��1+�2�, �B1�

�z�2 + D2��t�2 − i2F2�2 = iF2�1
*eit��1+�2�. �B2�

Here numbering of the �n functions corresponds to the num-
bering of the resonant frequencies in Fig. 1�a1�. Equations
for �1,2 couple via F2g*ei2qz in Eq. �5�. Solutions to Eqs.
�B1� and �B2� are found in the same way, as was done for
Eqs. �18� and �19�. Assuming that �1 is the cw pump and �2
is the generated signal we find

�2 �
iweiS2

D2�



t−zD2�

t

dt�F2eit���1+�2�−iS2−iS1. �B3�

Then Eqs. �27� and �28� can be used with

J = 

−





dtF2�t�eit��1+�2�−iS2�t�−iS1�t�

�
2
�+

sinh�
�+/�2q�cosh�
�+/�2q�
,

�+ =
�2 + �1

4
− q

D1� + D2�

D1�D2�
. �B4�

The next-order approximation for the amplitude of the field
at the cw-pump frequency is ��1���w�
1−4J2 / �D1�D2���,
where D1�D2��0.

In the case N=3 the two resonance frequencies are degen-
erate and the group velocity of the soliton coincides with the
group velocity corresponding to the degenerate resonance,
where D�=0; see Fig. 1�c1�. Therefore for the degenerate
point the second-order dispersion becomes a dominant term
and must be accounted for when we use the ansatz �15� and
slowly varying approximation. If the cw-pump frequency co-
incides with the point of degeneracy, point 1 in Fig. 1�c1�,
then strong changes happen to the pump itself, while the
other two waves, points 2 and 3, can be disregarded. The
governing equation for the �1 amplitude is then

i�z�1 =
D1�

2
�t

2�1 − 2F2�1. �B5�

Equation �B5� is a Schrödinger equation with D1���0. This
equation describes excitations with the negative effective
mass, which are repelled by the potential well created by the
soliton. This explains formation of the depletion region in the
pump field opposite to the soliton in the XFROG spectro-
grams shown in Figs. 1�c2� and 6�a1 ,b1�.
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